

P
a
g
e
 1

 ©
 2

0
1

4
 I

F
P

U
G

 Guidance from the

Functional Sizing

Standards Committee on

topics important to you

Shared Data

Real-time Responses
iTip # 06 (Version 1.0 06/08/2014)

iTips provide guidance on topics important to the FPA community. They explain the

application of IFPUG FPA method in a particular situation. iTips are not rules, but

interpretation of the rules, and provide guidance using a realistic example to

explain the topic being covered.

This iTip is focused on describing the IFPUG FPA method as it applies to data

sharing in a real-time environment from the perspective of the application

providing the data. This iTip includes a series of examples but is not an exhaustive

examination of the subject. For further examples, please see the current CPM and

other Shared Data related iTips.

Background

Chapter 3 in Part 3 of the current CPM addresses the sharing of data between

applications in a number of scenarios, but does not address the real-time

environment. This iTip provides additional guidance for counting the exchange of

data through implementations such as APIs, stored procedures and Web Services.

The examples provide focus on situations where Application A has a functional

requirement to provide data to Application B. Application A is the application being

measured. For the purposes of these examples it is assumed that the responses

contain no derived or calculated data and that no ILFs are maintained. In all cases

counting responses should be based on functional user requirements. Please refer to

the SNAP manual for further discussion as to what would be considered non-

functional user requirements.

Example 1: Real-time Data Request/Response

Application B requires data from Application A to complete a real-time

transactional function. Application B uses the data to complete transactional

processing (e.g., to display data on a screen) in Application B.

iTip iTip

P
a
g
e
 2

 ©
 2

0
1

4
 I

F
P

U
G

In order to obtain the required data, Application B sends a request to Application A.

Application A processes the request, accesses its data and sends a response with the

required data to Application B.

Transactional

function, which

requires real-time

data from

Application A

ILF

Application A Application B
 Request

 Response

From Application A’s perspective, there is a functional user requirement to provide

data to Application B. The primary intent of this function is to present data to

Application B (i.e., one of its users). Based on the primary intent, Application A

counts an EQ. The complexity of Application A’s EQ is determined based on the

number of logical files referenced (i.e., FTRs) and the number of DETs crossing (i.e.,

entering or exiting) the boundary.

Example 2: Real-time Data Validation Request/Response

Application B processes a transaction that requires Application B to validate

employment information. Since Application A owns and maintains Employee Data,

this is accomplished by Application B sending a request to Application A to verify

that an individual is a current full time employee. Application A accesses its

Employee Database and sends a response with the results of the validation to

Application B. The code for the validation resides in and is maintained by

Application A. Application B uses the response to complete its processing.

Transactional

function, which

requires

Application A

to validate data

in real-time

ILF

Application A Application B

 Request

 Response
Validation

Logic

From Application A’s perspective, there is a functional user requirement to search

its Employee Database and return information to Application B (i.e., one of its

P
a
g
e
 3

 ©
 2

0
1

4
 I

F
P

U
G

users) based on the request. The primary intent of this function is to present

information to Application B. The response to the validation request provided is

either the success or failure of retrieving the name and identification provided by

Application B. Based on the primary intent, Application A counts an EQ. The

complexity of Application A’s EQ is determined based on the number of logical files

referenced (i.e., FTRs) and the number of DETs crossing (i.e., entering or exiting)

the boundary.

Example 3: Database View Created for Reference

Application B presents data that is owned and maintained by Application A to the

user in an on-line query. Application A provides a database view that Application B

uses to reference the data. In the implementation of this requirement, Application A

creates a database view of its Customer data, filtering and summarizing the data so

that Application B can reference a specific subset. This view of Application A’s data

is created and maintained specifically for Application B; this view is not utilized in

any of Application A’s other transactional functions.

Retrieves Data
Transactional

function to display

Customer data from

Application A

Customer

Data (View)

Application A Application B

From Application A’s perspective, there is a functional user requirement to provide

specific data to Application B. The Customer database view is created solely to

fulfill this requirement (i.e., the view is not used by Application A for any other

purpose). The primary intent of this function is to present information to

Application B based on provided requirements (e.g., filtering and summarizing).

The data attributes (i.e., DETs) in the database view logically cross (i.e., exit) the

Application A boundary. Application A counts the database view as an EQ. The

complexity of Application A’s EQ is determined based on the number of logical files

referenced (i.e., FTRs) and the number of data attributes (i.e., DETs) crossing

Application A’s boundary.

If the view is provided solely for performance reasons, it would be considered to be a

non-functional implementation. For additional perspectives on how to measure non-

functional requirements, the reader is referred to the SNAP (Software Non-

Functional Assessment Process) framework at www.ifpug.org.

P
a
g
e
 4

 ©
 2

0
1

4
 I

F
P

U
G

Summary

While this iTip illustrates data sharing scenarios specific to a real-time

environment, the approach is intended to be technology-independent and can be

applied to many technologies and platforms. These examples translate a number of

scenarios of “how data is provided” back to the focus of “what function is provided”

per the Functional User Requirement. In all cases, the counting interpretation is

based on Application A’s user view and functional requirements. Analyzing the

primary intent is key to that determination. In all of these examples, the primary

intent for Application A is to provide data to Application B (i.e., one of Application

A’s users) in response to a real-time request. As a result, in each example an EQ is

counted within the Application A boundary, regardless of “how” the data is

physically provided.

Frequently Asked Questions (FAQ)

1. What happens when other applications in addition to Application B use the same

interface to request or validate data?

In this variation, Application A counts only one EQ regardless of the number of

applications that invoke the interface.

2. What happens when there are multiple APIs, Web Services or Stored Procedures

within Application A to provide or validate data?

Each access point receiving a request from another application is candidate for a

separate elementary process within Application A that must be evaluated for

uniqueness. If the same data is provided via different physical implementations

(e.g., an API and a Web Service require the same set of DETs and the same set

of FTRs and the same set of processing logic to satisfy the request), they should

not be counted separately.

3. What if the response includes derived data?

Application A would count the response as an EO.

4. What if Application B directly accesses Application A’s ILF in real-time?

Application A is passive in this sharing and there is nothing to count.

5. How does Application B count its request to Application A for data or

Validation?

Please refer to iTip #5 Shared Data – Real-time Requests.

P
a
g
e
 5

 ©
 2

0
1

4
 I

F
P

U
G

Further Reading

IFPUG Counting Practices Manual, Part 1, Section 5.5 – Measure Transactional

Functions

IFPUG Counting Practices Manual, Part 2, Chapter 7 – Measure Transactional

Functions

IFPUG Counting Practices Manual, Part 3, Chapter 3 – Shared Data

IFPUG iTip #5 Shared Data – Real-time Requests

IFPUG APM 2.1 Software Non-functional Assessment Process Manual (SNAP)

IFPUG offers iTips at no charge to the international function point community to stimulate the further
promulgation and consistent application of the IFPUG FPA Method. IFPUG would appreciate if you or
your organization would support IFPUG in its mission by becoming a member. For further information
please visit www.ifpug.org or send an email to ifpug@ifpug.org. IFPUG thanks you for your support.

http://www.ifpug.org/
mailto:ifpug@ifpug.org

